
Binary Exploitation

This section talks about exploiting information at a register level. We will talk about
debugging programs, how to hack into programs to make them do something different
from their intended use, how to safeguard against such attacks and much more.

Debugging is essential for any serious programmer. It is unlikely that you will write
code that works flawlessly the first time. However, there are many tips and tricks that
can help the sometimes painful process of debugging go more smoothly.

There are many things that you can do but the easiest way to debug is print
information that you think is useful and try to identify the location and the source of
the bug. Start by identifying where the execution of the program halts, then try
removing parts of the code until you know exactly what causes the crash or the error
to occur. Now, is the “easy” part of understanding why the error is happening, what
you intended to happen and what you should do to fix the error. This was just the first
step to debugging and there are many more techniques and tools that can help you
out. Let’s discuss one of the most important - GDB.

GDB - The GNU Project Debugger

GDB or The GNU Project Debugger is a very widely used software that can help
programmers catch bugs. It can help start and stop the execution of the program at
any stage, look at memory and register values, change things around in the program
and many more useful tools to help in debugging. This is an essential tool in any
Systems programmers arsenal so we will cover the essential part of GDB. Note: You
should have a working knowledge of C/C++, registers and memory before you continue. We
recommend checking out our section on Reversing.

Now, it isn’t important to know the inner workings of GDB to use it but we will cover
just the basics to get you to appreciate the tool. GDB consists of two major parts -

1. The Symbol Side: This is concerned with the “symbolic side” of the program,
which means the metadata about functions, variables, the source code and
essentially the program in the way it was written.

2. The Target Side: This part deals with all the manipulations that can be done to
the execution of the program like reading registers, accepting signals and
starting or stopping the execution. In UNIX, it uses the system call called
“ptrace” to accomplish this.

Both the parts are largely separate, however, the command interpreter and main
control loop tie these two parts together. Here is an excellent article on all the inner
workings of the GDB and talks about all the data structures used, how the different
parts work and how it came about. It is a very interesting read but might be too
complicated if you are a new programmer.

Here is a tutorial on almost everything you could want to know about GDB but we will
cover some of the more fundamental concepts now.

Starting up the environment:

To compile the code (in C), type

$ gcc -g filename.c -o executableName

Here, gcc is the GNU C Compiler, the -g flag tells the compiler that you intend to use
GDB, filename.c is the name of the file you wish to compile and -o is the optional flag
that tells the compiler what you want the name of the executable file to be (default is
a.out).

Now to start up GDB, type

$ gdb executableName

This just says to open up the executable file with gdb. You should see a bunch of
information talking about the gdb (this mostly not important). There will be a new
interface starting with (gdb), and this is GDB interface where you can use many
different commands. Here are some important ones -

1. ‘break’ or ‘b’: This command is always associated with a line in the code and
tells the compiler to stop program execution when it reaches this line. It is
usually followed by a line in order to put a ‘breakpoint’ at that line. You can
obtain information about all breakpoints by typing ‘info b’.

2. ‘run’ or ‘r’: This command runs the file that was loaded into gdb. This program
will run the file normally if no issues but will crash if there is an error or break
and give useful information about why it stopped.

http://www.aosabook.org/en/gdb.html
https://www.tutorialspoint.com/gnu_debugger/index.htm

3. ‘step’ or ‘s’: Runs the next line of the program and essentially steps through the
code. It will enter each function it encounters as opposed to ‘next’, which just
runs sub routines executing them line by line.

4. ‘Print’ or ‘p’: Prints the value of an argument (variable or registers) given to it.

These commands can help you run, stop and step through your program and debug it
by using printing and thus make up the most important commands. This is a great
tutorial explaining the use of some more basic commands. Execute ‘layout regs’ before
running your program as this will show you the assembly code and the register and
memory address values while you run your code. This is really helpful while
debugging.

https://www.cs.umd.edu/~srhuang/teaching/cmsc212/gdb-tutorial-handout.pdf

