
Reversing
Time to get with the program

This guide is a brief introduction to C, Assembly Language, and Python that will be
helpful for solving ​Reversing ​ challenges.

Writing a C Program
C is one of the most important modern programming languages and finds use in
almost all system programming applications. First thing first, ​here​ is a great tutorial
on C and goes into great detail about programming in C. The C language is a must
know for any modern programmer, so let’s cover some important Computer Science
concepts using C.

Let’s start with the concept of a function. A function is essentially a chunk of code that
takes an input and returns an output. It has a name, an arbitrary number of optional
parameters or inputs, instructions, and an optional return value or output.

int​ ​doubleNum​(​int​ a) {
 ​// Take a number and multiply it by 2
 ​int​ x = a * ​2​;
 ​return​ x;
}

This is a very basic program but the concepts in it are the same concepts used to write
huge, complicated applications.

Let’s dissect each part of the program to gain a deeper understanding. The block of
code in general is called a ​function ​ and is a set of instructions that usually complete a
logical function like multiplying a number by 2. It usually has a name, here
‘doubleNum’. Now, another important aspect of most programs is ​datatype​, which
quite literally is the kind of data that we are dealing with. It is usually associated with a
variable ​ which is just a structure that stores data. Here, the “int a” is a parameter for
the function “doubleNum” and means that this function takes one number as input.
The first “int” means that this function returns an integer as output.

x ​and ​a ​are variables that both store integers and are connected since​ x = 2*a ​.

https://www.tutorialspoint.com/cprogramming/index.htm

The return statement tells the computer that this function should give ​x ​as an output.
The last important part is the comments, denoted by the ‘//’ and is essentially telling
the computer to ignore the rest of the words on that line. You can write whatever you
want there and is essentially just meant to explain the logic in your code.

Now that you know the essentials of writing a C function (or a function in any language
really), we can talk more about how a computer even understanding what you are
trying to get it to do. Whenever, I say that a particular keyword tells the computer to
do something, I really mean that the programmer is telling the compiler to understand
the rest of the stuff in a particular context. The compiler essentially converts a High
level language into a low level language. It eventually gets converted into assembly
language and finally into 1’s and 0’s, which finally the computer can understand and
execute.

Compiling and Executing a C Program
There are multiple steps to converting a program from C to something a computer can
understand. These steps include Compiling, Assembling and Linking. The compiler
converts the code from C to assembly language (which we’ll discuss later), and the
assembler converts the code from assembly language to executable object. The main
compiler in C is called GCC (GNU C Compiler) and has the following syntax:

$ gcc -Wall filename.c -o filename

The ​filename.c​ is a placeholder for the C file you want to compile. The ​-Wall​ and ​-o ​ are
flags that tell the compiler options that can change the way the compiler works. ​-o
tells the compiler that the next token is the name of the executable object, ​filename.o
and ​-Wall ​ enables warning messages. Now, to run the file, you need to type

$./filename

which runs the file and takes any inputs and returns any outputs.

Assembly
We want to learn how to program in Assembly to cause changes without the added
layer of abstraction provided by higher level languages and thus write code that runs
faster and has more capabilities. ​Here​ is a great tutorial on everything you could want
to know about assembly programming but as always, I will go through some of the
more important concepts and provide a basic overview to help you get started.

Assembly programming is very different from normal programming in that we have to
worry about things that high level language programmers don’t have to worry about,
like where something is stored and how it is stored in memory. However, we still have
a program made of statements that the programmer writes that follows the syntax as
such -

Now, let’s dissect this -

1. label​ - This is a optional personal name we give to a statement in our code
2. name ​- This is the name of the operation we want to perform (ADD, MOV etc.)
3. operands ​- This is the optional list of parameters to the function
4. comment ​- This is denoted by a ; and functions as a comment in normal

languages

Registers

Before we can move to talking about different instructions in assembly language, we
need to talk about a very important concept - ​registers​. In general, we want to be able
to store variables and we cannot store them directly into main memory as that would
make access to the data very slow. Therefore, most computers have 32 special
locations in their CPU where we can store 32 bits of information. There special
locations are called registers and help us store and recall variables quickly and easily.

https://www.tutorialspoint.com/assembly_programming/index.htm

Some Common Instructions

Here is a list of common instructions in the X86-64 instruction set. However, let’s
discuss some important instructions to get an idea of what is going on. Here is a
sample program that performs a simple exercise of adding two numbers.

We start this off with a comment explaining what this code snippet is doing. ​MOV​ is
the instruction that takes a register and a register or data point and puts it into the
other register. It has the syntax as follows

MOV Dest, Source
Here, the destination is eax which is a register and 5 which is a data value. Therefore,
we put the integer values 5 and 4 into registers ​rax ​ and ​rbx​ respectively. Then, we
perform the ​ADD ​ instruction that adds the two data points it is given.

ADD Dest, Source
This instruction takes the data in ​Source ​and adds it to the data in​ Dest ​ and stores it
back in dest. Therefore, it adds the value 4 into the ​rax ​ register and store the result, 9
back into ​rax ​ register.

This is only a very simple example of assembly programming. However, you can
understand what some code is trying to do by following the similar concept. Pull up
the descriptions of the instructions online and start converting the snippet, line by
line, and piece together what the code is trying to do. Note, we did not use labels.

However, using just labels and a JMP statement, we can implement loops, functions
and recursion!

Big Endian vs. Little Endian
These are ways to store numbers or data in memory addresses. Let’s use a 16-bit word
as example , (0xFEED)​16​ in this case. Let’s also assume we are storing this word starting 1

at address 0x4000. We store these words in terms of bytes and not bits, so we need
some conversion. Recall that 16 bits is 2 bytes (since 1 byte is 8 bits). The word is stored
in pairs to make up the required 1 byte per memory location so our two parts will be
‘FE’ and ‘ED’.

1. Big Endian ​: This refers to big end first, which means that we store the most
significant byte at the smallest memory location and the rest follow normally.
Therefore, to store our word in this case, memory location 0x4000 will have the
byte ​FE​ and memory location 0x4001 will store the byte ​ED ​.

2. Little Endian ​: This refers to little end first and opposed to Big Endian, we store
the least significant bit at the smallest memory address and the rest follow
normally with the most significant bit at the last memory address. So, 0x4000
will have the byte​ ED​ and 0x4001 will have ​FE​.

Big Endian is commonly used in Networking application, while Little Endian is most
commonly used in processors

Python
Python is an amazing High Level language that is both easy to learn and allows the
programmer to do a lot of different tasks. That is probably why it is used so frequently!
Here ​ is a link to Carnegie Mellon’s introductory CS course using Python and you can
pretty much find whatever you could want to know about the basics of Python and CS
on this website.

1 In this case, ‘word’ means any number in Base-16 or Hexadecimal. So, a 16-bit word is a hexadecimal
number with 16 bits or 4 values.

http://www.cs.cmu.edu/~112/schedule.html

